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Supersymmetry in second-order relativistic equations €or the 
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Australia 
$ Department of Physics, University of Canterbury, Christchurch 1, New Zealand 

Received 19 June 1985 

Abstract. The factorisation method for constructing eigenstates and eigenvalues of the 
Schrodinger equation, based on the algebra of supersymmetry, is applied to second-order 
relativistic equations such as Kramers’ equation for the Dirac-Coulomb system (hydrogen 
atom); the well known helicity degeneracy, for example, of the 2s,/, and 2p,/, levels, which 
is broken by the Lamb shift, is thus associated with supersymmetry. A novel form of 
supersymmetry is found when 1 = 0: two interpenetrating ladders, founded on different 
and non-degenerate ‘ground’ states, coexist. One ladder, corresponding to a deeply bound 
ground state, has no counterpart in the physical hydrogen spectrum. Analogous results 
are obtained for the Klein-Gordon-Coulomb system in one and three dimensions. Eigen- 
states and eigenvalues for the one-dimensional Dirac-Coulomb system are found by 
projection. 

1. Introduction 

Supersymmetry affords an elegant interpretation of the level degeneracies of a Dirac 
electron both in a constant magnetic field (Khare and Maharana 1984, Blockley and 
Stedman 1985) and also in the hydrogen atom, or 3~ Dirac-Coulomb system (Sukumar 
1985a). It is curious that the accurate prediction of the breakdown of each of these 
degeneracies, by the anomalous g factor and the Lamb shift respectively, are historically 
major triumphs of QED. This supersymmetry of a Dirac electron in the field of an 
electric monopole parallels a supersymmetry in the field of a magnetic monopole 
(d’Hoker and Vinet 1984, 1985a, b, c, Yamagishi 1984). A unified relativistic formula- 
tion would be of interest; see also Ui (1984), Balantekin (1985) and Niemi (1985). 

In the 3~ Dirac-Coulomb system, described by O-+=O (§  2), Sukumar’s (1985a) 
construction centres on the coupled first-order radial equations. We give a different 
approach based on Kramers’ equation (O-O++ = 0; see Biedenharn and Horwitz 1984). 
The associated second-order radial equation may be cast in scalar form ( 0  2), and is 
then particularly amenable to the standard application of supersymmetric quantum 
mechanics (Gendenshtein 1983, Andrianov et a1 1984a, b, c, 1985, Sukumar 1985b, c, 
Stedman 1986). Indeed its supersymmetric solution has close affinities with the 
non-relativistic Coulomb system as well as the Klein-Gordon-Coulomb system ( 0  4). 
However the details of the construction (§ 3) require a careful discussion of alternative 
parametrisations of the supersymmetry generator, and also reveal a new feature: for 
zero orbital quantum number I, there are two interpenetrating supersymmetric ladders 
of solutions, based on different and non-degenerate ‘ground’ states. One of these states 
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1374 P D Jarvis and G E Stedman 

is essentially the 1s ground state of the physical hydrogen atom. The other is deeply 
bound ( E t  - a m o c 2 )  and strongly peaked at the origin (4; - exp( - r / A c ) ,  where A, is 
the Compton wavelength). The ladder of eigenstates built upon this state, while valid 
solutions of Kramers’ equation, have no physical counterpart in the hydrogen atom; 
the corresponding eigenstates of the first-order equation (the projections O++E, n = 
0, 1, .  , .) are non-normalisable (§ 5). Corresponding results hold (§ 4) for the ( 3 ~ )  

Klein-Gordon equation with either a I D  (l/lxl) or 3~ ( l / r )  Coulomb potential; we 
refer to these for brevity as the I D  and 3~ Klein-Gordon-Coulomb systems respectively. 
Similarly the projected eigenstates appropriate to the I D  Dirac-Coulomb system may 
be constructed, and those corresponding to the deeply bound state are non-normalisable 

The physical interest of these deeply bound states, and so the associated ladders 
of solutions, has been controversial. Loudon (1959) found such a state in the I D  

non-relativistic Coulomb system (the Schrodinger equation with a 1/ 1x1 potential); for 
the debate on its significance, see the references of Spector and Lee (1985). Loudon 
also found a double degeneracy of all excited levels, the degenerate states having 
opposite parity. Imbo and Sukhatme (1985) pointed out that this degeneracy has a 
simple interpretation in supersymmetric quantum mechanics: the partner supersym- 
metric Hamiltonians are identical. Indeed the above-mentioned ladders are analogous 
to the odd- and even-parity solutions of Loudon (1959) (§ 4). Again the physical 
applicability has been debated (McIntosh 1971, Spector and Lee 1985). Certainly 
one-dimensional equations with Coulomb potentials have a practical application. 
One-dimensional Coulomb systems have been realised experimentally in 1 D fabricated 
semiconductor devices (see Spector and Lee 1985), and also for charges interacting 
with their images in tHe surface of liquid helium (Grimes et a1 1976, Poitrenaud and 
Williams 1972, 1974). The observed spectrum corresponds to excited state transitions, 
and surface effects are certain to modify any physical interpretation of the deeply 
bound states. Our (apparently novel) solution of the I D  Dirac-Coulomb system 
confirms the absence of the deeply bound state for a spin-f particle in a ID  Coulomb 
potential. We also consider the 3~ Klein-Gordon-Coulomb system, which describes 
pionic and kaonic atoms. The Klein-Gordon fine structure has been observed (see 
the references in Friar and Tomusiak 1984), although only in highly excited states; 
strong interaction effects will certainly modify (probably unrecognisably) the most 
optimistic attempts to give a physical significance to the deeply bound state in this 
system. 

We now briefly review the standard application of supersymmetric quantum 
mechanics. For every non-relativistic system whose Schrodinger equation contains a 
potential V ( r ) ,  we may create another with a Schrodinger equation whose potential 
V ‘ ( r )  may differ, but whose eigenvalues are in (nearly) 1 : 1 correspondence. We write 
the original Schrodinger equation H+ = [-( h 2 / 2 m ) V 2 +  VI+ = E 4  in the form 

(1 )  

(§  5). 

HJ, = ( A + A +  &)+ = E+, 

by the construction 

A = [ h / ( 2 m ) ” ’ ] [ - V + ( V  In Go)], E = E,  

E,, +, being the ground-state energy and wavefunction. The supersymmetric counter- 
part is then H’(A+)  = (AA++ & ) ( A + )  = E ( A + ) .  As the above construction shows, H 
and H ’  have common eigenvalues. (If H and H ‘  are each of physical interest, the 
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degeneracy also has physical interest.) Supersymmetry gives a fundamental interpreta- 
tion of this degeneracy. The supersymmetry generator Q 

Q - [ O  A “1 0 ’  

is nilpotent and corresponds to a Hamiltonian H = { Q, Q’} which is supersymmetric 
([ H, Q ]  = 0) and which contains H ’  - E and H - E in block diagonal form. The ‘bosonic’ 
(say H )  sector and ‘fermionic’ (H‘) sector have paired degenerate eigenstates coupled 
by Q (i.e. by A ) ,  except for the zero-energy ground state (of H - E ) ,  which is non- 
degenerate (e.g. Blockley and Stedman 1985). 

An application of these ideas to the radial equation for the non-relativistic hydrogen 
atom generates radial operators for adjacent 1 values (but the same potentiill) as 
supersymmetric partners. Hence this supersymmetry implies the 1 independence of 
the eigenvalues traditionally associated with the O(4) symmetry of this problem 
(Sukumar 1985a). (The application detailed by Kostelecky and Nieto (1984) is identical 
to this in principle. However it is unhelpful to say, for example, that supersymmetry 
links s states to s states, p to p, etc; in the first analysis, this supersymmetry algebra 
links systems of levels for which AI = 1. Their application is extended and related 
work is reviewed in Kostelecky et a1 (1989.) 

The factorisation technique has been applied in the case of the relativistic hydrogen 
atom to the second-order radial equation by Green (1965), and (including the link 
with supersymmetry) to the coupled first-order radial equations by Sukumar (1985a). 
It is the first method in particular which has close affinities with the above discussion, 
and which we shall emphasise in this paper. The second-order radial equation for the 
(relativistic) Dirac hydrogen atom may be cast into a Schrodinger-like form; the only 
change is the redefinition of a few scalar parameters, provided (see § 2 )  we work in 
the eigenbasis of the operator A where 

In these equations {a}  are the Pauli matrices, { y @ }  the Dirac matrices, CY = e * / 2 h c ~ ~  
is the fine structure constant, the caret denotes a unit vector and cy = yoy ( y o  = P ) .  A 
is called the Temple operator (and is written as r) by Biedenharn (1983), and is called 
the Martin-Glauber ( L )  or Johnson ( J )  operator by other authors. We note in passing 
(see 0 2 )  that the eigenvalues K of the operator K (equation (3)) have equal magnitude 
and opposite sign ( K  = * I K ~ )  in the two states of each excited level for given j, i.e. in 
the states n(1-  l)j, nh, where I =  I~l,j = IKI -~ ,  and that these states are degenerate (the 
helicity degeneracy) since the energy is independent of sgn(K) (figure 1). For any 
choice of j, the energy level structure of the Dirac atom, apart from an overall shift 
in energy, has precisely the standard form of a supersymmetric spectrum-a non- 
degenerate ground state, and doubly degenerate excited states. In addition, factorisa- 
tion of the second-order radial equation (Green 1965) introduces operators analogous 
to A which ladder between radial wavefunctions with opposite signs of K ,  and from 
which the radial eigenfunctions may be obtained in principle by an aufbau technique 
(Green 1965), as in the general method referenced above. (This ladder operator is 
related to the operators variously called the Coulomb helicity operator or the 
Lippmann-Johnson operator-cf equation (69) of Biedenharn (1983) for example-as 
we confirm in § 5 . )  All this indicates strongly that this degeneracy may be attributed 
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Figure 1. Schematic energy level scheme (not to scale) for the 15 lowest energy solutions 
of Kramers' equation; these form initial states of various supersymmetric hierarchies as 
discussed in the text. Full lines denote solutions corresponding to physical positive-mass 
solutions of the first-order Dirac equation. Negative-mass counterparts (see figure 1 of 
Martin and Glauber (1958)) are not depicted. Markers on the vertical axis represent level 
positions ( N  = 1,2 ,3)  in the absence of fine structure; some fine structure splittings are 
indicated in units of m,c2. The action of various ladder operators are illustrated, and 
relevant Hamiltonians H ( p ) ,  H ' ( p )  are given at the foot of each column; in each case 
subscripts denote the relevant value of / K I .  

to supersymmetry in essentially the same manner as for the non-relativistic hydrogen 
atom. It appears as if this supersymmetry should result from a trivial application of 
the general formulation to the second-order radial equation for the relativistic hydrogen 
atom. 

However, some differences of principle between the solutions of the relativistic and 
non-relativistic second-order equation complicate the demonstration. First, we no 
longer have O(4) symmetry, the analogue of I in the radial equation is not an integer 
and the parameters in the radial equation are level-dependent. Second, the operator 
A is non-Hermitian; in addition, it does not commute with the Dirac Hamiltonian. 
The interpretation and the factorisation procedure are greatly complicated by the 
A-diagonalising transformation, which parallels a transformation in the Sommerfeld 
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theory rather than anything in the non-relativistic quantum theory (Biedenharn 1962, 
1983). Third, novel factorisations may be found even for familiar equations, by 
judicious choice of parameters. For example, in their analysis of the types of potential 
which will give the observed level ordering in charmonium, Grosse and Martin (1984) 
discuss new factorisations of the harmonic oscillator radial equation. (Their D factori- 
sation is a puzzling claim; it fails to satisfy the stated properties, and indeed there 
seems to be no a priori motive for introducing it since the symmetry they find in their 
equation (27) could equally well be achieved from the Hermitian conjugate of their 
equation ( 2 5 ) . )  Fourth, only (admixed versions of) the eigenfunctions @ of the 
(second-order) Kramers’ equation are eigenfunctions 9 of the (first-order) Dirac 
equation, and to judge from figure 1 of Martin and Glauber (1958) only some of the 
related degeneracies are of physical interest. In retrospect, we find a further difference: 
the existence of the deeply bound solution (together with the associated ladder of 
eigenstates) of the Kramers’, but not the Dirac, equation. 

2. Kramers’ equation 

The 3~ Dirac-Coulomb equation for the hydrogen atom has the form 0-9= 
( 7 f - m o c ) 9 = 0 ,  where # = y p ( p p - q A p ) ,  pp=iha , ,  q A o = - a h c / r  (for other atoms 
than hydrogen, a+&).  9, being a positive mass solution, has zero negative mass 
projection; the positive and negative mass projection operators are 

0, = c ( 7 f *  moc2) = cy - p + yo( E + ahc/ r )  * mOc2 

where we use a metric (+ - - -) and where E = ih a,. We shall solve Kramers’ equation: 

0- O+@ = 0 = 0,o-@. (4) 

Eigenstates 9 for the 3~ Dirac-Coulomb system are derived by projection: 9 = O,@ 

With the substitution p 2  = ( 1 /  r)pfr + L2/ r2 (where p r  = E. p = -ih a,) Kramers’ 
(§  5 ) .  

equation reduces to the form 

[a2/ar2 - ( K 2  - a’+ A ) / r 2 + 2 a E /  hcr - k 2 ]  ( I @ )  = 0 ( 5 )  

where k = ( mgc4 - E 2 ) ” 2 /  hc. 
The operators J =  L + ( h / 2 ) a ,  PK, and 0, mutually commute; A commutes with 

PK, K 2 ,  J and 0-0, but not with K or 0,. Nevertheless the eigenbasis of A (the 
‘Biedenharn’ basis) is particularly convenient, since the operator in equation ( 5 )  
becomes a scalar. (This basis has also proved convenient for the solution of the 
Dirac-Coulomb problem by path-integral methods (Kayed and Inomata 1984).) Note 
that although A is non-Hermitian, its eigenvalues are real (Martin and Glauber 1958) 
and the required transformation of basis is unitary (Biedenharn 1983); we shall use 
right eigenvalues and eigenstates of A throughout. The eigenstates @ of Kramers’ 
equation can be labelled by their energy and by the eigenvalues j ( j +  1)h2, m,h, h ~ ,  A 
of the operators J 2 ,  J,, PK,  A, respectively. The eigenstates of the Dirac equation, 
9 = O+@, are labelled by the eigenvalues of J 2 ,  J,  and PK,  but the projection 0, will 
admix eigenstates of A ( 8  5 ) .  

K anticommutes with a *  E (and with a * p ) .  This has three consequences of 
immediate interest. First, as mentioned above, K and A do not commute. Second, 
K 2  and A do commute and the operator in equation (5 )  is a scalar in the Biedenharn 
basis. Third, A’= K 2 / h 2 -  a’; this gives the useful form A ( A +  1) to the numerator of 
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the centrifugal term in equation (5), and also gives the relation A =*I? where K 5 
+(K’- a2)’”, between the eigenvalues A and f i 2 ~ ’  of A, K Z .  The connection between 
sgn(K) and sgn(A) (sgn is the sign function) will be discussed in 9 5. 

The angular part of the solution, in particular the algebra of the angular momenta 
J, L (Margeneau and Murphy 1968, Messiah 1962) gives j = i ,  5 , .  . , I =  
1,2, . . , ( L z  = I (  1 + 1) h 2 ) .  Since J z  = K z  - fi2/4, j = I K ~  -:; any one of j ,  ~ K I  or K deter- 
mines the other two. Hence K = *l ,  *2,. . . Also, since L2 = K 2 +  fiK = PK(j3K + fip), 
I ( / +  1) = A ( A  f l ) ,  +(-) for upper (lower) components ( ( p ) =  1(-1)). For the upper 
components, then, we may identify I = / ~ I + : ( s g n ( ~ )  - 1) as the conventional orbital 
quantum number for the Dirac solution. 

3. Supersymmetric construction of solutions of Kramers’ equation 

We write the scalar form of equation (5), changing the normalisation for convenience, 
as 

[-D’+A(A + i ) /y*-  i / y ]n  = - ( i / 4q2)n  (6) 

where D=a/ay, y=2qkr,  q=aE/ f i ck  and O(y)=yO(r) .  We now solve for both 
eigenstates and eigenvalues of equation (6) using the supersymmetry approach to the 
Schrodinger equation. As Green (1965), for example, comments, equation (6) has the 
same form as the non-relativistic analogue. It does not follow that its solutions also 
have the same form; A is irrational and non-positive, and this affects the construction 
of normalised wavefunctions. 

We seek a factorisation of equation (6) as in equation ( l ) ,  and try the form 

A ( P ) ~  - D + p / y - q  

H ( p )  = A + ( P ) A ( P ) +  &(P) 
= -D2+p(  p - l ) /yz-2pq/y+ E + 4’. ( 7 )  

This requires p ( p -  1) = A ( A  + l ) ,  q = q ( p )  = 1/2p, E = ~ ( p )  = -q2 .  The first condition 
gives two roots: p ( ’ )  = -A, p‘” = A + 1. The other conditions give q = p for the ground 
state since the analogue of the ground-state energy E of 9 1 is the eigenvalue -1/4q2 
of equation (6) and since q is positive by definition (as explained below, p is positive). 

The ground state no for any choice of A is given (cf equations (1) and (2)) by the 
constraint A n ,  = 0. This constraint gives no a y exp( -qy) .  For normalisability at 
infinity, q must be positive. For normalisability at the origin, we require in three 
dimensions convergence of the integral J (R,(y)/y)’ dT, and in one dimension conver- 
gence of the integral O , (Y)~  dy, i.e. in each case p > -4. Together, these conditions 
require that p be positive, since q = 1/2p. (In § 5 we shall see that not all normalisable 
solutions of Kramers’ and related equations are also normalisable on projection for 
the Dirac equation, since the projector 0, introduces a factor y-’,) 

The root p ” )  is positive as required only for negative A ( A  = - 2 ) .  With a particular 
choice of IKI, and with this choice of Hamiltonian ( p  = I?) we obtain one sector (say 
bosonic) of a supersymmetric hierarchy as the eigenstates of H( E ) .  The ground state 
becomes !Jo,l,,,-ay‘ exp(-y/2K). (We label eigenfunctions by R.,l,l,sgn(h)(y) where 
the integer n labelling the eigenstates for states of given A (i.e. of given I K I ,  sgn(A)) 
increases with energy from zero.) H( K )  then describes all states of given K with A < 0; 
all these are appropriate for the numerator K(K-1) of the O(y-’) term in H ( K ) .  In 
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contrast, the root p ( ’ )  was of no interest in the non-relativistic solution since 1, the 
analogue of A, is non-negative (see however § 4). 

The supersymmetric partner H ’ (  p )  = AA+ + E is uniquely defined given a choice 
of p as above, and the O ( Y - ~ )  term has the numerator p (  p + 1). If we wish to identify 
H ’ ( p )  as a Hamiltonian of physical interest in the context of our problem, we must 
identify the numerator p ( p +  1) with the (physically interesting) form A ( A  + 1) in 
equation (6) ,  perhaps with a different value of A, say p :  p ( p + l )  = p ( p + l ) .  This 
assignment in turn has multiple solutions: p “ )  = p ,  p( ’ )  = -( p + 1). For p = p “ ) ,  pcL(2) = 
-( K + 1) and has no direct physical interest since it cannot correspond to some i K ’ .  
However the choice ,U*(’)= K gives H ’ ( K )  the relevance of describing all states with 
this K and with A > 0. We label these in the same way as before, with n commencing 
at zero for the state of lowest energy. This establishes the other (fermionic) sector of 
the supersymmetric hierarchy as the set of states with the same K, but opposite A. 
Hence by supersymmetry the states 9n,l,l,-(y), 9 ~ , , - , ) , l K l , + ( y )  with given 7, K but 
opposite values of sgn(A) are degenerate in the Dirac hydrogen atom (figure 1). This 
gives helicity-conjugate states (for example, the levels split by the Lamb shift) their 
familiar degeneracy; the projected states with opposite values of sgn( K )  are admixtures 
of the above states and so also degenerate (§  5 ) .  

We now discuss the root P ( ~ ) .  p”’ is also positive if A > -1. This includes all the 
values A > 0, when P ‘ ~ ’  = K + 1 and H (  p‘”) has the same (previously fermionic, now 
bosonic) solutions as discussed above for H ’ ( K ) .  This gives no new result; H’(K + 1) 
contains the physically uninteresting numerator ( K  + 1)( K + 2) so that the new fermionic 
solutions do not correspond to the Dirac-Coulomb problem. By way of contrast, it 
was just this root which was of interest in the non-relativistic problem; here, however, 
K is irrational. Nevertheless, we shall find a constructional value in these unphysical 
Hamiltonians. 

The root P ‘ ~ ’  also includes the curious special case p = p *  = 1 - (1 + a2)’l2,  corre- 
sponding to an eigenstate with A < O ,  K = -1, with the same quantum numbers as 
the 1sl /2  state (1.1 = 1, sgn(A) = - l ) ,  but with a greatly different wavefunction: a,*a 
y p *  exp(-y/2p*) = yp’2 exp(-y/P) ( P  = a 2 ;  note that y/2p* 2 r / A J  and energy (cf 
equation (8)) E *  = moc2( ~ * / 2 ) ” ~  = i m o c 2 [ (  1 + a)’/’- (1 - a)’/‘] = am,c2/2 ,  corre- 
sponding to the choice E,* = - 1 / 4 ~ * ~ .  This positive energy and normalisable solution 
of Kramers’ equation (figure 1) seems not to have been noted before, though it is 
equally accessible from the series solution and similar states have been discussed in 
other systems ( 9  4). Fortunately for the hydrogen ground state (or perhaps unfortu- 
nately for the SDI initiative), there is no corresponding solution for the first-order Dirac 
equation (see 9 5 ) ;  there, the series solution requires p = K for positivity in the ground 
state. 

This solution clearly differentiates the application of the factorisation procedure 
to the first-order radial equations (Sukumar 1985a) and to Kramers’ equation, and 
serves as a graphic illustration of the qualitative difference between the relativistic and 
non-relativistic applications of equation (6). 
a,* is the lowest energy state of an infinite set of solutions forming one sector of 

a supersymmetric ladder, interleaving the states in the ladder based on Ro,,,-. Kramers’ 
equation has this peculiar feature, not anticipated in previous discussions of supersym- 
metry in quantum mechanics, of admitting two non-degenerate nodeless functions of 
the form y p  exp(-qy), each of which may form the basis of a simple factorisation 
scheme. We shall compare these two hierarchies shortly, but note here that since 
E,* = E (  1 - K )  << E (  E ) ,  although Cl,* is an eigenstate of the positive definite operator 
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A+(E)A(E),  its eigenvalue is negative. The essential feature which was lacking in 
earlier discussions is that only one of the states formed by the action of the ladder 
operators A, A+,  need be normalisable. In our case neither A( I?)@ nor A( 1 - E)fk,, l ,-  
are normalisable, and so not all excited eigenstates have degenerate partners. 

We now iterate this construction following Gendenshtein (1983) and Sukumar 
(1985a, b, c), to generate all the bound-state wavefunctions. (For given K (orj ,  or 1.1) 
these are contained in H (  K )  and H'(  K ) ,  for A < 0 and A > 0 respectively.) We generate 
an infinite chain {H,lm = 0, 1 , .  . .} of Hamiltonians, each lacking the ground state of 
its predecessor, with adjacent Hamiltonians defined by equation (7)  where H + H,,  
H ' +  H,,, , A +  A,, E + E,, our previous analysis applying to m = 0. For m > 0 we 
must choose the only positive root p = p m  = E + m ;  A ,  = A(p, )  and E, = ~ ( p , ) .  This 
results in formally the same Hamiltonian hierarchy as in the non-relativistic case. The 
necessity of considering non-physical Hamiltonians for m > 1 is no impediment to the 
method, which is now purely one of construction. The lowest eigenvalue E ,  of H ,  
equals the eigenvalue -1/4q2 of equation (6) if 7 = 7, = E + m ;  hence (from the earlier 
definitions of 7 and k) we have the energy eigenvalues 

E ,  = moc2/[l+(cr/7,)2]1'2 (8) 

of the Hamiltonian H (and H') directly (Green 1965). The principal quantum number 
N is therefore I K I  + m, the nearest integer to 7,. 

We obtain similarly an analytic derivation of the eigenfunctions. With this choice 
of T,, the ground state x;' of H ,  is given from equations ( 2 )  and (7) as x z ) a  
y p m  exp( - y / 2 p m ) .  The excited states Ho = H (  E )  (or HI = H'( E ) )  are given by applying 
n operators A t  on this state, converting between supersymmetric partners in each pair 
of adjacent Hamiltonians: 

This construction is paralleled in the factorisation approach of Green (1965), but is 
more complete since the ground states x:' are also determined by the supersymmetry 
argument (more exactly, by equation ( 2 ) ) ,  solving the eigenfunction problem for all 
bound states completely and elegantly (Sukumar 1985a). 

Since each application of A t  creates a node in the radial wavefunction (Baumgartner 
et a1 1984), n is also the number of nodes; from equation (9), m = n +f( 1 + sgn(A)). 
With 7, = E + m, N = I K  I + m this defines all bound-state quantum numbers, energies 
(equation (8)) and eigenfunctions (equation (9)). 

A similar form for the eigenfunctions is given by Martin and Glauber (1958) 
(x = 2kr, a = 

nfl,lKl,Sg"(,)(X) OC 

+ m - n ) :  

e x'2 (a /a~)" (x"+~"- '  e-") 

= [ a / a x + ( a - l ) / x - ~ ] " ( x " ' "  e-"'2 ) a  

This may be verified from equation (9) by contour integration (C V Sukumar, private 
communication). 

A similar derivation may be made for the additional solutions nf associated with 
p *  = 1 - E ,  when A = - E ,  I K I  = 1 (the asterisk in this context distinguishes parameters 
relevant to this case, and does not mean complex conjugation). The Hamiltonian 
Hd = H (  1 - K )  has as its supersymmetric partner HT = H'(  1 - I?) = H ( 2  - I?). Iterating 
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as before, p*, = p *  + m, and we have the further excited states for Kramers' equation 

(10) R: = A,*+AT+. . . AX+iLo) 

where in all definitions p m  + p % ;  similarly, in equation (8). 

4. Supersymmetric solutions of other second-order relativistic equations in Coulomb 
systems 

4.1. Introduction: non-relativistic limil 

Several equations may be cast in the form (generalising equation ( 6 ) )  

(-D2+ N / ~ ~ - 5 / y ) R = - ( 1 / 4 7 7 ~ ) R  (11) 
where D = a/ay, 5 = sgn(y) (in I D  problems). The supersymmetric analysis has the 
standard form of equation (7) ,  with q + 54, p ( p  - 1) = N, and with 77, = p,,, = p + m 
defining the standard hierarchy of Hamiltonians and eigenvalues. 

For example, in the non-relativistic case, the 3~ Coulomb system has the above 
form with N=I ( I+ l ) ,  R=ycP, y=2ar /hc ,  ~ ~ = - a ~ m , c ~ / 2 E ,  and the I D  Coulomb 
system has an analogous form with N = 0, R = cP, y = 2ax/hc,  which is formally the 
same equation with 1 = 0. If the I D  equation has an infinitely bound ground state, then 
so does the 3~ equation; these possibilities correspond to the alternative parametrisation 
of Q 3 in which p = p(')  = - I ;  for 1 = 0 this has the marginal value of zero, and one 
might define A (  p )  = -D+p/y  - 5/2p in a pathological limit ( p  + O+). In the I D  case 
A has negative parity, so that formally at least supersymmetry renders states of opposite 
parity degenerate, as Imbo and Sukhatme (1985) state. However this does not escape 
the controversial questions; A(O)R,,, is undefined and H,,, = H, so that the supersym- 
metric construction fails to generate a ladder of solutions. The relativistic equations 
discussed below do allow such a construction since the fine structure terms avoid the 
pathological limit. 

4.2. Klein-Gordon-Coulomb equations 

The method parallels § 3. In the 3~ case, the Hamiltonian q A o + [ ( p c ) 2 +  ( m , ~ ~ ) ~ ] " ~  
with q A o = - a h c / r  and p = - i h d  leads to equation (11) with N=1(Z+1)-a2,  and 
with R = y o ,  y = 277kr = 2aEr/  hc as in § 3. The I D  case leads to an analogous equation 
with N -a2, R = 0, y E 277klxl-formally the same equation with 1 = 0. We may 
treat their solutions together. Since p (  p - 1) = I (  1 + 1) - a', p ( I )  =- (1 + J R ) / 2  or p ( 2 )  = 
(1-JR) /2 ,  where R =  l+4[1(1+1)-a2]. 

p") is the only positive value for I Z O  and generates the standard ladders of 
solutions. Successive levels may be removed using a supersymmetric hierarchy of 
Hamiltonians and hence the eigenvalues of equation (8) and the eigenfunctions of 
equation (96) where pm = p ( l ) +  m. None of the Hamiltonians H,,, with m > 0 are of 
physical interest; the Klein-Gordon-Coulomb system has no supersymmetric 
degeneracies. For general p ,  the eigenvalues are given by 

E ( m , p )  = m o c 2 ( p + m ) / [ l ( l + l ) + m 2 + ( 2 m +  l)p]"2. 

In addition, for 1 = 0, p") (= p * )  is positive and is associated with a deeply bound 
and sharply peaked state. The 'ground' states (for p , p *  respectively) have energies 
given by Eo(*) = m,c2Jp(*' = $moc2[ (1 + 2a) ' /* * (1 - 2a)'l2], so that E,* = amoc2. The 
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two ladders of eigenstates may be constructed as before, giving equations (9) and (10) 

P D Jarvis and G E Stedman 

with ,-,jn*)= p m  ( * ) -  - p ( * )  + m. The first few eigenstates of H~ are (for p = (1 * J R ) / 2 )  

no = y P  exp(-b/2p) ,  

= [Y / 2 - 0 / ( 3 * 1 ( 5 f R 11 exp[ - LY/ 2 ( p + 1 11. 
The excited states Rc ’  are not sharply peaked but have the typical extension of a Bohr 
radius ( - A J a ) .  (The discussion by Spector and Lee (1985), which does not employ 
supersymmetry, gives several of these results for the I D  case, but confuses the spectra 
of the two ladders.) The spectrum of the two ladders is given in figure 2. 

The I D  case has little affinity with, and so gives little support for, the discussion 
of Imbo and Sukhatme (1985) for the non-relativistic limit. Parity is not relevant for 
eigenfunctions with non-integral exponents p ,  and we have no simple relation as 
suggested by Loudon (1959) in the non-relativistic case for degenerate, or near degener- 
ate, eigenfunctions; the analytic form of the wavefunction R guarantees that fl and 

Figure 2. Schematic energy level scheme (not to scale) for the lowest energy solutions of 
the 3~ Wein-Gordon-Coulomb equation. Supersymmetric partner states (solutions of 
H ’ ( p ) )  are always unphysical, and not depicted here. Solutions of the I D  Klein-Gordon- 
Coulomb system correspond to the first two columns (i.e. I = 0). Solutions of the ID  
Dirac-Coulomb system correspond to the second column only. Notation is as for figure 1. 
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DR match at the origin. AoRZ*, is non-normalisable, and though AtR,  is normalisable, 
the Hamiltonian of which it is an eigenstate is unphysical. 

5. Solutions of the Dirac-Coulomb systems 

5.1. 30 Dirac-Coulomb system 

First we relate the Lippmann-Johnson helicity transfer operator to the supersymmetry 
discussed above. The operators A* essentially perform this function, since the degener- 
ate states between which they transform (figure 1) have opposite expectation values A 
of A, and hence opposite signs for (a .  L) and ( a .  J ) .  In detail, the general supersym- 
metric construction (Sukumar 1985b, c) applied to equation ( 6 )  gives 

1/2 A(K)y'?ln,lK1,- Y'n-1,lKl,+ 

At(K)Y'n-l,lKl.+ = - '0) Y n , l K / , -  
1/72 ' 

which on rearrangement gives ( p  = sgn( A ) = * 1) 

(1 - ( p ~ / v k ) [ ~ , +  ( p ~  + ~ ) / ~ J I Q ~ , I ~ I . ~  = (K/~)211'2'd./K~.-& (12) 

(the n values being those appropriate to states at a given level) in essential agreement 
with equation (69) of Biedenharn (1983). 

The mass projection operators may be rewritten using equation (12), and also 
(Martin and Glauber 1958) c a  - p = ca  ;( p ,  + ia - L/ r): 

0, = P { E  - ( h c / a ) ( A  - K / h )  [a, + ( A +  l)/r]}* moc2. 

This gives the projected functions the form 

For example, the projection of the ground state on the supersymmetric ladder for any 
I K I  gives 

o + @ O , i K l , -  = mOc2(1 -PK/hIKI)@O,I~i,- 

so that K = - ( K (  for a positive-mass projection to exist. In this case (sgn(A) = 
-1) sgn( K) = - l ( + l )  for the positive- (negative-) mass projections. In general, each 
projection can be obtained from either choice of sgn(A). It is convenient to choose 
sgn( K )  = p = sgn( A )  to avoid a tendency-and in the above case, certainty-for cancel- 
lation in the first term of equation (13) (Martin and Glauber 1958). 

Similarly the additional states may be projected; however, they give non-normalis- 
able functions. For example: 

O+Q,* = P{moc2( 1 - 22 - K /  h ) / [ (  1 + a)II2 - ( 1  - a ) 1 / 2 ]  

+ (hc/(rr)(3 -2K)(K f K /  h)}O,*. (14) 

The normalisation constraints on solutions of the Dirac equation are again that the 
exponential part vanishes at infinity and that the leading power law exponent be greater 
than -4. The function of equation (14) has a leading exponent y P * - l ,  and so is 
non-normalisable, explaining the absence of the corresponding solutions for the Dirac 
equation. 
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5.2. I D  Dirac-Coulomb system 

The I D  Dirac-Coulomb system is governed by O-q=O, where now O,= 
-ihcy, 8, + yo(E  + ahc/ lx l ) i  moc2. Inserting the gamma matrices gives two sets of 
coupled first-order radial equations, and it is readily checked that no nodeless solutions 
of the form x p  exp(-qlxl) exist in any scalar basis at finite energy. The ‘direct’ 
supersymmetric approach then fails, at least in its simplest form. Indeed, no general 
solution of this equation has been traced despite its obvious physical interest. 

However the analogue of Kramers’ equation (O-O+q = 0) is just that for the I D  

Klein-Gordon-Coulomb system. Hence we may project the solutions of 0 4.2 by 0, 
to obtain solutions of the I D  Dirac-Coulomb system. The states corresponding to p* 
are non-normalisable, and so unphysical (as in 0 5.1), but the states associated with 
p =f ( l  + J R )  give rise to valid solutions of the form O+R, with the same spectrum 
( E ( m ,  (1  + J R ) / 2 ) )  as for these solutions of the I D  Klein-Gordon-Coulomb system. 
For example, the I = 0 ground state has the form 
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